A Multicarrier Phase-Coded Waveform Design Scheme for Joint Radar and Communication System
-
Graphical Abstract
-
Abstract
A Multicarrier phase-coded (MCPC) waveform design scheme with two steps for Joint radar and communication (JRC) system is developed. Firstly, an integrated MCPC waveform design method is addressed by simultaneously maximizing the Signal-to-clutter-to-noise ratio (SCNR) and the Shannon capacity, subject to both the Integrated sidelobe level ratio (ISLR) constraint and the energy constraint. This model is theoretically proved to be a convex optimization problem with respect to the absolute squares of the transmit weights corresponding to different subcarriers, of which the analytical result is also discussed. Subsequently, by further optimizing the phases of the transmit weights, minimizing the Peak to average power ratio (PAPR) for JRC system is recast as a Semidefinite programming (SDP) problem, which can be effectively solved with the Semidefinite relaxation (SDR) technique via Eigenvalue decomposition (EVD) or Complex Gaussian randomization (CGR). Numerical examples are provided to verify the effectiveness of the proposed scheme.
-
-