Improving Knowledge Graph Completion Using Soft Rules and Adversarial Learning
-
Graphical Abstract
-
Abstract
Knowledge graph is a useful resources and tools for describing entities and relationships in natural language processing tasks. However, the existing knowledge graph are incomplete. Therefore, knowledge graph completion technology has become a research hotspot in the field of artificial intelligence, but the traditional knowledge graph embedding method does not fully take into account the role of logic rules and the effect of false negative samples on knowledge embedding. Based on the logic rules of knowledge and the role of adversarial learning in knowledge embedding, we proposes a model to improve the completion of knowledge graph: soft Rules and graph adversarial learning (RUGA). Firstly, the traditional knowledge graph embedding model is trained as generator and discriminator by using adversarial learning method, and high-quality negative samples are obtained. Then these negative samples and the existing positive samples together constitute the label triple in the injection rule model. The whole model will benefit from both high-quality samples and logical rules. In addition, we evaluated the performance of link prediction task and triple classification task on Freebase and Yago datasets respectively. Finally, the experimental results show that the model can effectively improve the effect of knowledge graph completion.
-
-