LUO Hui, HAN Jiqing. Semi-supervised Robust Feature Selection with ℓq-Norm Graph for Multiclass Classification[J]. Chinese Journal of Electronics, 2021, 30(4): 611-622. DOI: 10.1049/cje.2021.05.003
Citation: LUO Hui, HAN Jiqing. Semi-supervised Robust Feature Selection with ℓq-Norm Graph for Multiclass Classification[J]. Chinese Journal of Electronics, 2021, 30(4): 611-622. DOI: 10.1049/cje.2021.05.003

Semi-supervised Robust Feature Selection with ℓq-Norm Graph for Multiclass Classification

  • Flexible manifold embedding (FME) is a semi-supervised dimension reduction framework. It has been extended into feature selection by using different loss functions and sparse regularization methods. However, these kind of methods used the quadratic form of graph embedding, thus the results are sensitive to noise and outliers. In this paper, we propose a general semisupervised feature selection model that optimizes an ℓq-norm of FME to decrease the noise sensitivity. Compare to the fixed parameter model, the ℓq-norm graph brings flexibility to balance the manifold smoothness and the sensitivity to noise by tuning its parameter. We present an efficient iterative algorithm to solve the proposed ℓq-norm graph embedding based semi-supervised feature selection problem, and offer a rigorous convergence analysis. Experiments performed on typical image and speech emotion datasets demonstrate that our method is effective for the multiclass classification task, and outperforms the related state-of-the-art methods.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return