ZHANG Naimin, ZHANG Ting. Recurrent Neural Networks for Computing the Moore-Penrose Inverse with Momentum Learning[J]. Chinese Journal of Electronics, 2020, 29(6): 1039-1045. DOI: 10.1049/cje.2020.02.005
Citation: ZHANG Naimin, ZHANG Ting. Recurrent Neural Networks for Computing the Moore-Penrose Inverse with Momentum Learning[J]. Chinese Journal of Electronics, 2020, 29(6): 1039-1045. DOI: 10.1049/cje.2020.02.005

Recurrent Neural Networks for Computing the Moore-Penrose Inverse with Momentum Learning

  • We are concerned with a kind of iterative method for computing the Moore-Penrose inverse, which can be considered as a discrete-time form of recurrent neural networks. We study the momentum learning scheme of the method and discuss its semi-convergence when computing the Moore-Penrose inverse of a rankdeficient matrix. We prove the semi-convergence for our new acceleration algorithm and obtain the optimal momentum factor which makes the fastest semi-convergence. Numerical tests demonstrate the effectiveness of our new acceleration algorithm.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return