An Effective Biogeography-Based Optimization Algorithm for Flow Shop Scheduling with Intermediate Buffers
-
Graphical Abstract
-
Abstract
This paper proposes an Effective biogeography-based optimization (EBBO) algorithm for solving the flow shop scheduling problem with intermediate buffers to minimize the Total flow time (TFT). Discrete job permutations are used to represent individuals in the EBBO so the discrete problem can be solved directly. The NEH heuristic and NEH-WPT heuristic are used for population initialization to guarantee the diversity of the solution. Migration and mutation rates are improved to accelerate the search process. An improved migration operation using a two-points method and mutation operation using inverse rules are developed to prevent illegal solutions. A new local search algorithm is proposed for embedding into the EBBO algorithm to enhance local search capability. Computational simulations and comparisons demonstrated the superiority of the proposed EBBO algorithm in solving the flow shop scheduling problem with intermediate buffers with the TFT criterion.
-
-