Evaluation of GNSS Signal-in-Space Continuity: A Weibull-Distribution-Based Method
-
Graphical Abstract
-
Abstract
Signal-in-space (SIS) continuity is an important performance index of Global navigation satellite system (GNSS). However, the studies on the continuity of GNSS SIS are limited both at home and abroad, and are mainly based on the exponential distribution method. We first employ this method to analyze SIS failures of GPS and BDS, finding that this method is not flexile when describing the characteristic of GNSS SIS failures and the fitting characteristic of this method is not well. Therefore, we propose a method based on Weibull distribution to evaluate the performance of GNSS SIS continuity. Our method is compared with the models of exponential distribution, normal distribution, and Gamma distribution regarding the fitting characteristics of the interruption time interval of GPS SIS, the critical parameter of continuity. Results show that the fitting characteristic of the Weibull-distributionbased method is the best and can be used in various forms to describe reliability problem. Then our method is used to evalute the SIS continuity of BDS and GLONASS and its effectiveness and rationality are validated again. The contributions of our study lie in the development of a practical method for evaluating GNSS SIS continuity and a reference for GNSS performance.
-
-