A Mixed Non-local Prior Model for Image Super-resolution Reconstruction
-
Graphical Abstract
-
Abstract
Generating high-resolution image from a set of degraded low-resolution images is a challenge problem in image processing. Due to the ill-posed nature of Super-resolution (SR), it is necessary to find an effective image prior model to make it well-posed. For this purpose, we propose a mixed non-local prior model by adaptively combining the non-local total variation and non-local H1 models, and establish a multi-frame SR method based on this mixed non-local prior model. The unknown Highresolution (HR) image, motion parameters and hyperparameters related to the new prior model and noise statistics are determined automatically, resulting in an unsupervised super-resolution method. Extensive experiments demonstrate the effectiveness of the proposed SR method, which can not only preserve image details better but also suppress noise better.
-
-